
 1

ASCoT, the NASA Analogy Software Cost Tool Suite: Expanding
Our Estimation Horizons

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109

Jairus Hihn, Tom Youmans,

Alex Lumnah, Michael Saing,

Elinor Huntington, Melissa Hooke

Jet Propulsion Laboratory/
California Institute of Technology

Pasadena, CA

James Johnson
National Aeronautics and Space

Administration
Washington, DC

Tim Menzies

North Carolina State University

Raleigh, NC

Abstract—The NASA Analogy Software Costing Tool Suite

(ASCoT) consists of a cluster-based analogy estimator for

estimating software development effort, a K-Nearest Neighbors

(KNN) analogy estimator for estimating effort and delivered

lines of code, a simple regression-based cost estimating

relationship (CER) model that estimates cost in dollars, and a

probabilistic version of COCOMO II. In this paper we

document the analogy algorithms as well as summarize the

results of the performance of the KNN and the principle

components (PCA) cluster analogy models. KNN performance

is assessed by varying the number of inputs and number of

neighbors. Four different clustering methods: K-means,

Spectral Clustering, Hierarchical Clustering, and Principle

Components Analysis (PCA), and their respective evaluation

criterion are described in detail. The comparative performance

of all four estimation models is assessed using magnitude of

relative error (MRE) measurements.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. DATA SUMMARY ... 2
3. ARCHITECTURE AND METHODOLOGY 5
4. ASCOT ESTIMATION TOOLS 5

A. Cost Estimating Relationship 5
B. Analogy Estimation Using KNN 6
C. Cluster Analysis ... 10

5. CONCLUSIONS AND NEXT STEPS 19
REFERENCES... 19
BIOGRAPHY .. 19
APPENDIX A: ACRONYMS AND ABBREVIATIONS ... 21
APPENDIX B: SYSTEM PARAMETERS WITH

DEFINITIONS AND EXAMPLES 22
APPENDIX C: MISSION DATA INCLUSION LIST 24

1. INTRODUCTION

Software cost estimates are often required in the early stages

of mission design when the technical details are not fully

1 For full list of acronyms used in this paper, see Appendix A.
2 Pred(30) is an example of a MRE metric that was a popular measure of

understood and software experts are not around. To help

address this problem, a decade-long research journey was

undertaken to better understand alternative estimation

methods and to determine if a model could be developed with

minimal, flexible, inputs while avoiding the occurrence of

large estimation errors, even when systems engineers and

non-experts are attempting to estimate flight software costs.

The use of analogy has been well documented in the literature

on software cost estimation [1,2,3]. Software developers

typically perform analogy estimates based purely on memory

with no supporting data, which results in non-reproducible

estimates with difficult to determine accuracy. Thus,

academics have proposed various formalizations of analogy

to improve estimation replicability and accuracy [2,3, 8]. The

simplest of these formulations use distance as a means of

assessing similarity between projects, frequently using data

mining algorithms such as K-Nearest Neighbors or

clustering. An advantage of these methods is their ability to

handle categorical data in addition to quantitative data.

The NASA Analogy Software Cost Tool (ASCoT)1, was first

introduced at the 2016 IEEE Aerospace conference [4] and as

a web-based tool [5] in 2017. ASCoT is designed to address

the specific problems associated with generating more

realistic estimates in the earliest parts of the lifecycle (CML

1). The NASA Analogy Software Cost Model is built on

research into the effectiveness of data mining algorithms to

develop repeatable, well-documented analogical software

estimation models [6,7,8,9]. The purpose of ASCoT is to

enable the ability to estimate software development effort and

cost early in the project lifecycle using easily attainable

inputs, such as the type of mission and the number of

instruments. ASCoT is developed as a compliment or

extension to the existing widely applied parametric methods.

The other contribution of this paper is the emphasis on the

use of the magnitude of relative error (MRE) as a metric for

evaluating cost model performance for cluster analysis, and

for comparing parametric vs non-parametric models2.

model performance in the eighties and nineties, but seems to have since

fallen out of favor.

 2

The following is a summary of the key findings from our

previous work [4,5,6,7,8,9]:

• There are a variety of models whose performances are

hard to distinguish (given currently available data), but

some models are clearly better than others.

• Based on an extensive analysis of various estimation

models, it was found that COCOMO II performed as

well or better than every other estimation method

evaluated, which included various data mining

algorithms [10,11,12]. In other words, if one has

sufficient detailed knowledge to run COCOMO or a

comparable parametric model, then the best model is the

parametric model.

• When insufficient information exists then a model using

system parameters can be used to estimate software costs

with only a small reduction in accuracy. The main

weakness is the possibility of occasional large estimation

errors, which the parametric model does not exhibit.

• While a nearest neighbor model performs as well as

clustering based on MMRE, clustering handles outliers

better and provides a structured model with more

capability.

ASCoT the tool suite consists of four estimation

models/tools: an Analogy effort estimator based on

Clustering, an Analogy effort and size estimators based on

KNN, a linear regression CER (Cost Estimating

Relationship), and a probabilistic version of COCOMO II.

However, ASCoT is only available via the NASA ONCE

server which is only assessable to those with a NASA Badge.

Therefore, the focus of this paper is primarily on

documenting the algorithms and validation results for the

PCA cluster analysis and the KNN estimation models which

can be applied by others.

2. DATA SUMMARY

Data Sources

The primary data source is the NASA Cost Analysis Data

Requirement (CADRe). The CADRe is a formal project

document that describes the life-cycle cost, schedule,

technical, and risk information of a project. The CADRe has

three separate Parts: A, B, and C. Part A is a narrative

description of the project throughout its lifecycle at each

milestone and includes essential subsystem descriptions,

bock diagrams, and heritage assumptions. Part B contains the

technical design parameters such as power, mass, and

software metrics for each subsystem in a standardized

template. Part C captures all the cost data broken out by Level

2 of the Work Breakdown Structure (WBS) throughout the

lifecycle by project phase. Questionable CADRe data was

revised with information/data from other sources and

additional data added as follows:

• Available missing data items were obtained from other

sources including contacting project software

managers

• System descriptor data was supplemented with data

from NASA project websites, project reports, and

Wikipedia articles.

• Software metrics for older missions that predated the

CADRe were supplemented with data records from a

data collection conducted for the International Space

Station that was completed in 1990. A subset of these

records can be found at the PROMISE (Predictor

Models in Software Engineering) website under the

COCOMO directory.

• Contributed NASA Center level data

Data Description

A list of relevant variables used in the tool can be found in

Table 1. Each variable is accompanied by the number of

missions with complete data for that field.

Table 1 Data summary with number of

records – 34 missions have complete verified

data and are used in ASCoT Clusters

Data Item

Number

of Data

Records

as of 2018

Total development effort in work

months 39

Flight Software Development Cost 43

Flight System Development Cost 43

Source Lines of Code

(SLOC)

Delivered SLOC 51

Inherited SLOC (Reused plus

Modified reused) 43

COCOMO Model inputs (See

Appendix A for the parameter

definitions) - Translated from

CADRe 19

Systems Parameters

Mission Destination

(Asteroid/Comets, Earth, Inner

(planetary), Outer (planetary)) 51

Multiple element (probe, etc…) 51

Number of Instruments 51

Number of Deployable 51

Flight Computer Redundancy

(Dual Warm, Dual Cold, Single

String) 51

Software Reuse (Low, Medium,

High) 49

Software Size (Small, Medium,

Large, Very Large) 51

 3

The data used in the ASCoT estimation tools was last updated

in March, 2018. Note that the number of records reported in

the data summaries in Table 1 through Table 14 vary due to

missing data.

There are a total of 61 missions in the dataset, with 51 that

could be used in at least one model. While the models share

many of the same missions, the data used is different as

ASCoT contains different models that estimate effort,

dollars, and lines of code.

As few new missions launch each year, the number of records

has only increased by nine since the ASCoT prototype was

developed in 2015. Since then, the focus has been on

improving data quality, improving model performance and

adding new estimation models. For a detailed description of

the types of data parameters collected see Appendix B and

for the COCOMO model see [13]. Appendix C contains a

list of all missions for which data was obtained with an

indication of which missions were used to build the analogy,

KNN and regression models.

Table 2 through Table 7 below summarize the data by

median, average, and spread metrics for each parameter.

There has been little change in the summary metrics as a

result of the addition of the new and corrected data. Overall,

inner/outer planetary missions have more lines of code,

higher development effort, cost more, have more instruments,

and are more likely to be dual string than Earth Orbiters. Not

surprisingly, inner/outer planetary missions have

significantly more deployables and instruments than all other

mission types. Slightly surprising is that Earth Orbiters and

inner/outer planetary missions have similar inheritance rates

even though many Earth orbiters can draw more easily on the

various contractor product lines.

 Table 2 Effort by Mission Type

Mission

Type

EFFORT (Months)

of

Records Median Std. Dev. Avg. Range

Asteroids

/ Comets
7 546 373 583 48 - 1048

Earth 14 499 466 632 100 - 1830

Inner

Planetary
17 664 435 813 336 - 1888

Outer

Planetary
4 620 411 723 346 - 1307

Table 3 Delivered SLOC by Mission Type

Mission

Type

Delivered SLOC by mission type, actual count

of

Records Median Std. Dev. Average Range

Asteroids/

Comets 7 143,000 35,189 118,679 24,100 – 246,654

Earth 23 62,000 39,986 211,600 23,000 – 170,000

Inner

Planetary 17 122,000 133,765 105,411 62,900 – 475,000

Outer
Planetary 4 54,000 21,633 126,120 24,000 – 130,150

Table 4 Software size by size category and mission type

Mission

Type

Software Size Category

of

Records Small Medium Large

Very

Large/

Extra

Large Median

Asteroids/

Comets 7 2 2 2 1 Medium

Earth 23 2 16 5 0 Medium

Inner

Planetary 17 0 5 9 3 Large

Outer

Planetary 4 1 1 2 0 Large

Tables 4 and 5 show software size and inheritance by mission

type. While the actual code counts for software size and

inheritance (or at least estimated code percentage for

inheritance) were known data parameters, these values were

binned into categories for two reasons. Most notably, the tool

is designed to be used for early lifecycle phase estimates only,

so estimators would only require an approximate idea about

the number of delivered and inherited SLOC. The other

reason is due many inconsistencies in how lines of code are

recorded in the NASA CADRe and with a lack of

documentation on counting rules, the use of categories is a

more accurate reflection of the actual accuracy of the data.

Table 5 Inheritance by Mission Type

Mission

Type

Inheritance

of

Records

VL to

None Low

Med-

ium High

Very

High Median

Asteroids

/ Comets 7 1 1 3 0 2

Med-

ium

Earth 21 3 1 5 6 6 High

Inner

Planetary 17 4 1 3 4 5

Med-

ium

Outer

Planetary 4 2 0 1 1 0

Med-

ium

Table 6 and 7 show deployables, instruments, and flight

computer redundancy by mission type. It is shown that the

number of deployables and number of instruments are higher

for inner/outer planetary compared to Earth orbiters and

asteroids/comets. In addition, Dual-String Cold and Dual

String Warm flight computer redundancy is also higher

compared to Earth missions.

Table 6 Deployables and Instruments by Mission Type

Mission Type

of

Records

Deployable Instruments

Median Range Median Range

Asteroids/

Comets 7 1 0 - 3 3 2 - 5

Earth 23 2 0 - 8 3 1 - 10

Inner Planetary 17 2 0 - 10 4 3 - 10

Outer Planetary 4 3 0 - 8 10 7 - 12

 4

Table 7 Flight computer redundancy by mission type

Mission

Type

of

Records

Flight Computer Redundancy

Single

String

Dual

String-

Cold

Dual

String-

Warm Median

Asteroids/

Comets 7 1 6 0

Dual
String

Cold

Earth 23 12 11 0
Single
String

Inner

Planetary 17 5 8 4

Dual

String

Cold

Outer

Planetary 4 0 2 2

Dual

String

Warm

Tables 8 through 11 show Delivered Productivity by Logical

Lines of Code by mission type and inheritance level; low

(<20%), medium (<50%), high to very high (>=50%).

Inherited code includes both reused and modified reused code

reuse. As expected, all mission categories clearly show that

increases in inheritance result in higher productivity rates.

Table 8 Productivity (Delivered Logical SLOC) by

mission type

Mission

Type

of

Records

Logical Equivalent SLOC

Median

Std.

Dev. Avg. Range

Asteroids/
Comets 7 175 203 267 124 - 615

Earth 14 192 208 250 46 - 823

Inner

Planetary 16 244 90 237 65 - 394

Outer

Planetary 4 178 109 174 37 - 302

Table 9 Very low to none and low inheritance delivered

productivity

Mission Type

Very Low to None and Low Inheritance

(0% - <20%) Delivered SLOC Productivity

of

Records

Avg.

Prod
Median Prod Range

Asteroids/

Comets
2 89 89 24.1 - 154

Earth
4 112 117 62 - 150

Inner Planetary
5 214 149 62.9 - 475

Outer Planetary
2 77 77 24 - 130.15

Table 10 Medium inheritance delivered productivity

Mission

Type

of

Records

Medium Inheritance (>20% - <50%)

Delivered SLOC Productivity

Avg.

Prod

Median

Prod Range

Asteroids/

Comets 2 141 141 100 - 182

Earth 3 91 81 23 - 170

Inner

Planetary 1 - - -

Outer

Planetary 1 - - -

Table 11 High and very inheritance delivered

productivity

Mission

Type

of

Records

High and Very High Inheritance

(>=50%) Delivered Productivity

Avg. Prod
Median

Prod
Range

Asteroids/

Comets
2 166 166 86 - 247

Earth 12 93 92 41 – 154

Inner
Planetary

10 157 163 90 - 224

Outer

Planetary
1 - - -

12 and 13 provide a summary of the flight software and flight

system cost records in FY16 dollars ($M). As with the effort

data, the cost of inner/outer planetary missions are more

expensive then earth orbiters. The data indicates that the

difference in cost is greater than the difference in effort

between mission types. This is most likely because the

reported cost includes procurements and costs of additional

WBS elements that are not included in the effort data. For

example, some contractors include simulators for the flight

system with flight software costs as they are used for testing

the flight software. Another pattern not shown here, but

present in the data, is that the median value of the ratio of

flight software costs to flight system cost is 10% for all

mission types except In Situ which is 5%.

Table 12 Software development cost (FY16$ M)

Mission Type
of

Records

Software Development Cost

(FY16$M)

Avg. Prod Median Prod Range

Asteroids/

Comets
6 12 12 1 - 24

Earth 19 9 7 1 - 24

Inner Planetary 16 19 17 3 - 63

Outer Planetary* 2 26 26 12 - 40

Table 13 Total spacecraft (FY16$ M)

Mission Type
of

Records

Total Spacecraft Development Cost

(FY16$M)

Avg. Median Range

Asteroids/

Comets
6 173 166 50 - 305

Earth 19 123 72 15 - 386

Inner Planetary 16 287 217 41 - 1,335

Outer Planetary 2 297 297 193 - 401

 5

3. ARCHITECTURE AND METHODOLOGY

Figure 1 ASCoT Architecture

As mentioned previously, ASCoT consists of four estimation

models/tools: a clustering model, a KNN model, a linear

regression, and a probabilistic version of COCOMO II. How

these tools relate to one another is shown in the architecture

diagram in Figure 1. Except for COCOMO II, all of the

models/tools in ASCoT only use high level system

descriptors as inputs. When ASCoT is completed, the outputs

of these models will be used as the inputs into the more

complex COCOMO estimation model.

One of the significant contributions of the research conducted

in developing ASCoT is the recognition of the importance of

using the magnitude of relative error (MRE) and its

associated measures, such as the mean or median MRE, as a

metric for evaluating cost model performance across very

different types of models. MRE measures are popular in the

data mining literature because they require no assumptions

about the underlying distributions, enabling one to compare

model performance across very different types of models.

Pred(30), another MRE statistic, was very popular in the cost

field in the eighties and nineties but seems to have fallen out

of favor [7]. For a detailed description of the various models

evaluated and the MRE evaluation method see [2,4,7]. In

generating the MRE and other evaluation metrics for this

paper, we have used leave-one-out cross validation and then

computed the average or median for each test point as

appropriate. Detailed descriptions of procedure and analyses

of model performance for each of the estimation tools is

described in the sections below.

4. ASCOT ESTIMATION TOOLS

A. Cost Estimating Relationship

The following regression models were developed with cost

data from the CADRe Part C with minimal normalization,

partly as a test to see to what extent the raw CADRe data

could be successfully used to develop a basic cost model.

Minimal normalization makes verifying the project data used

in the model very fast and easy. The basic regression models

performed so well that they were included as part of the

ASCoT tool. Again, as with the analogy model, the guiding

principle was to keep the regression simple with inputs that

can be “approximated” in the early stages of concept

development through Step 1 proposals, and in early phases of

the lifecycle. ASCoT features one univariate CER model

which branches into three separate regressions; and one

multivariate linear model with just two predictors.

Model 1: Software Development Cost as a function of Total

Spacecraft Development Cost

Although this model is only dependent on one variable (Total

Spacecraft Development Cost), it is actually the composition

of three independent models segregated by mission type (All

Missions, Inner and Outer Planetary Missions, Earth

Missions). Each model stands independently, using only its

subset of observations to fit a least squares simple linear

regression. The model parameters and key test statistics for

all three models are shown in Table 14.

All three models produced significant F-test results compared

to the intercept-only model. As a quick rule of thumb, the

results indicate that flight software costs around $4 million at

a minimum and then runs at 5% of spacecraft cost. This result

is heavily driven by the planetary missions, as when

analyzing only Earth/ Lunar orbiter missions, the intercept is

not significantly different from 0 and software runs at 6% of

spacecraft cost.

Table 14 Univariate model parameters and test statistics

 Intercept

(t)

β Spacecraft

development

cost (t)

Model

statistics

All Missions
4.42

(3.34*) 0.05

(10.19*)

n = 42

F = 103.9*

df = (1,41)

R2
adj = 0.71

Planetary

Missions

7.24

(2.89*) 0.04

(6.77*)

n = 17

F = 45.9*

df = (1,16)

R2
adj = 0.73

Earth

Missions 1.36

(0.90)

0.06

(6.29*)

n = 18

F = 39.5*

df = (1,17)

R2
adj = 0.68

Model 2: Software Development Cost as a function of Total

Spacecraft Cost and Total Number of Instruments

In the multivariate case, all missions’ Software Development

Costs were regressed on both Total Spacecraft Development

Cost and Total Number of Instruments using least squares

minimization. However, as shown in Table 15, the result was

not significant compared to the univariate model according to

the a nested F-test which returned an F-statistic of 1.2,

indicating that the addition of number of instruments to the

model did not explain a significant amount of additional

variance.

 6

Table 15 Multivariate model parameters and test

statistics

Intercept

(t)

β Spacecraft

development cost

(t)

β Number of

Instruments

(t)

Model

statistics

2.80

(1.40) 0.04

(7.85*)

0.53

(1.09)

n = 42

F = 103.9*

df = (1,41)

R2
adj = 0.71

Fnested = 1.19

Outlier Analysis

Visualizations of the data for this model made obvious that

the data included one clear outlier: Mars Science Laboratory

(MSL). MSL is a very large Rover Mission whose Total

Spacecraft Cost of $1,335 million and a Software

Development Cost of $63 million make it an outlier in both

the x and y directions. This value is extremely influential

according to Cook’s Distance, crossing the typical threshold

value of 1, while the rest of the points average a Cook’s

Distance of .016. MSL also had high leverage, with a Hat

Value of .70 which is well over the threshold of .095 (the

typical threshold for Hat Values is 2p/n, where p is the

number of predictors in the model).

An analysis of the relative error distributions of each model

was performed to determine whether including the MSL

outlier was justified. For the All Missions univariate model,

while the median relative error for the curve with MSL was

actually slightly lower than the MRE without MSL, it was

only by a factor of .005 (.323 vs. .328), which is insignificant.

Also, the MRE curves shown in Figure 2 are almost on top of

each other, crossing over each other frequently, indicating

that the regression models with and without MSL are

indistinguishable in terms of the prediction errors that they

produce.

Figure 2 MRE distributions with and without the outlier

As the difference in error was negligible, the benefit of being

able to predict MSL was worth including the outlier so that

future predictions in the range of MSL are not drastically

overestimated. The same results were found for the

multivariate model and the Planetary Mission regression

models, so MSL was included in the data.

B. Analogy Estimation Using KNN

Introduction—The ASCoT k-Nearest Neighbor regression

model is a simple non-parametric method used to estimate

either the total development effort or the total delivered lines

of code using Euclidean distance as a measure of similarity.

A user may input any combination of the following variables

to make an estimate: Mission Size, Mission Type,

Redundancy, Destination, Number of Instruments, Number

of Deployables, and Inheritance (if estimating total

development effort). The decision to use these organization-

specific variables comes from the authors of [3] who suggest

that when using analogy methods on an intraorganizational

database the specificity of the data is not as beneficial if the

organization uses generic COCOMO-like factors. By using

these organization-specific measurements available in the

early phases of project formulation, we hope that the analogy

methods used in ASCoT will not only provide accurate cost

estimates, but also return relevant data from historical

missions that are actually similar to the project at hand.

The algorithm takes in all of the provided dimensions and

first converts the categorical variables to integers, per Table

22. The training data, described in the Data Summary section

above, as well as the test point (the point that is being

estimated) are then normalized by subtracting the mean of

each dimension and dividing by the range of that dimension

in the training data. This standardization method is similar to

methods used in [2,3]

KNN Algorithm

The K-Nearest Neighbor (KNN) algorithm is a simple non-

parametric model used to estimate a continuous dependent

variable for a point based on the distance to neighboring

points in the set [14].

Take a finite set 𝐴 ⊂ ℝ𝑚+1, where |𝐴| = 𝑛 for some 𝑛 ∈ ℤ+

and each vector 𝒗𝑖 ∈ 𝐴 is of the form:

𝒗𝒊 = (𝑋𝑖,1, 𝑋𝑖,2, ⋯ , 𝑋𝑖,𝑚, 𝑌𝑖) (1)

where 𝑌𝑖 is the continuous dependent variable we are trying

to estimate. Given a test point 𝒑 ∈ ℝ𝑚 of the form:

𝒑 = (𝑋𝑝,1, 𝑋𝑝,2, ⋯ , 𝑋𝑝,𝑚) (2)

We define the distance 𝐷 from the test point 𝒑 to any training

point 𝒗𝑖 using the following function:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0th 25th 50th 75th

M
R

E

Percentile

MRE Distributions With and Without MSL
With Without

 7

𝐷(𝒑, 𝒗𝒊) = √∑ (𝑋𝑝,𝑗 − 𝑋𝑖,𝑗)2𝑚
𝑗=1 (3)

By calculating the distance 𝐷 between the test point 𝒑 and all

of the neighbors 𝒗𝑖 ∈ 𝐴, we may reorder the set A such that:

𝐷(𝒑, 𝒗𝟏) ≤ 𝐷(𝒑, 𝒗𝟐)) ≤ ⋯ ≤ 𝐷(𝒑, 𝒗𝒏) (4)

Given some 𝑘 ∈ ℤ+ such that 0 < 𝑘 < 𝑛, we may estimate

the dependent variable 𝑌𝑝 for our test point according to the

following equation:

𝑌𝑝 =
∑

𝑌𝑖
𝐷(𝒑,𝒗𝒊)

𝑘
𝑖=1

∑
1

𝐷(𝒑,𝒗𝒊)
𝑘
𝑖=1

 (5)

The equation above provides an average of the dependent

variable 𝑌𝑖 belonging to the k points closest to p, weighted by

the inverse distance to each point. Weighting by the inverse

distance gives the points which are closest to the test point p

the most influence over the estimate of p.

Choosing the Number of Neighbors (k)

Leave-one-out cross validation (LOOCV) was utilized in

order to choose an appropriate k value for which the

prediction errors — both the magnitude of relative error

(MRE) and the squared error (SE) — were minimized.

LOOCV for selecting k according to this criterion operates

according to the following algorithm:
1. Set k

2. Remove one observation, the “test mission”, from the data

3. Build KNN model on the remaining observations or

“training missions”

4. Predict value for the test mission using weighted average

of k neighbors

5. Compute relative error and squared error for the test

mission

6. Repeat Steps 2-5 for all n missions

7. Compute MRE and MSE summary statistics given n

errors in Step 5 and 6

8. Repeat 1-7 for each new k and choose the k that minimizes

the most parameters in Step 7

This form of cross validation is preferred over k-fold cross

validation for the data at hand because it maximizes the

number of observations available to train the KNN algorithm.

That said, LOOCV still prevents the test mission from

influencing its own cost estimation, which means that these

error rates are very similar to the error rates that users should

expect when predicting mission costs for new missions that

are not in the dataset. Table 16 and Table 17 summarize the

MRE and MSE distributions obtained from LOOCV for k =

1, 2, …, 7 and for predicting using the mean.

Generally, as k is incremented, each of the MRE summary

statistics decreases gradually, hits a minimum, then increases.

Since the goal is to maximize the number of missions with

small MREs, we want the distribution of the MREs to be as

close to zero as possible. The same is true of the squared error

statistics, MdSE and MSE.

Table 16 KNN Effort k value LOOCV error rates

k

MRE SE

25th 50th Mean 75th Max Median Mean

1 0.18 0.47 0.60 0.60 3.93 67600 128415

2 0.18 0.38 0.54 0.54 4.22 64803 100932

3 0.15 0.37 0.51 0.51 4.50 39814 92299

4 0.13 0.31 0.47 0.47 3.67 37351 88276

5 0.19 0.31 0.51 0.51 3.53 36727 102908

6 0.16 0.31 0.52 0.52 3.84 36601 103112

7 0.15 0.28 0.52 0.52 3.85 40621 106915

Mean 0.17 0.37 0.69 0.69 6.03 40161 154793

For the KNN Effort model, four of the seven LOOCV error

statistics reached a minimum at k=4: the 25th and 75th

percentiles of the MRE, the mean MRE, and the MSE (mean

squared error). The three error statistics that were not

minimized fell to within 10% of their minimum values. The

median MRE for k=4 was .31, indicating that half of test

missions were estimated within 31% of their actual efforts,

while half of test missions fell within 193 work months of

their actual effort according to MdSE.

Table 17 KNN SLOC k value LOOCV error rates

k

MRE SE

25th 50th Mean 75th Max Median Mean

1 0.14 0.35 0.60 0.60 4.47 1479 4020

2 0.21 0.34 0.61 0.61 4.12 1159 3741

3 0.21 0.31 0.63 0.63 5.32 1805 3788

4 0.21 0.31 0.59 0.59 5.03 1560 3958

5 0.15 0.32 0.59 0.59 5.51 1852 4132

6 0.17 0.32 0.61 0.61 5.78 1774 4546

7 0.14 0.33 0.63 0.63 5.48 1924 4823

Mean 0.21 0.35 0.70 0.70 4.53 1375 6143

For the KNN SLOC model, the evaluation criterion did not

point as clearly to one particular value for k. Since the MRE

values did not exhibit the same trend toward a minimum for

SLOC as they did for the Effort model, we relied on the

squared error values to choose k.

Both the MdSE and the MSE reached a minimum at k=2. The

MdSE for k=2 was 1159 (thousand SLOC), which was 22%

lower than the next lowest k value. In addition, the maximum

MRE, which ranged from 4.12 to 5.78, hit a minimum at k=2.

This is an important additional metric to consider in model

selection because minimizing the maximum error in the

model helps prevent any one estimation produced by the

model from being extremely far off the mark.

 8

KNN Model Performance

We assessed the prediction accuracy of the KNN models by

comparing the KNN estimates to point estimates using only

the mean effort and SLOC. To remain consistent with

LOOCV and prevent each test mission from influencing its

own cost estimation, the mean was calculated as the

numerical average of all other points in the historical dataset.

For example, to estimate the effort of Dawn, we removed

Dawn and averaged the effort of all other missions in the

historical dataset, then calculated the MRE of that estimate

using the actual effort for Dawn.

Figure 3 MRE distribution for KNN (k=4) versus MRE

for predicting effort using the mean

Prediction performance for the KNN Effort model is

considerably better than prediction performance using the

mean effort, as seen in Figure 3. For this model, 50% of MRE

values lie below 0.31, while the mean had a MdMRE of 0.37.

The interquartile range of the MRE also was lower and

narrower for KNN than for the mean; the maximum MRE

was 39% lower. Visually, the MRE curve lies almost entirely

below the MRE of the mean, indicating that most test

missions had more accurate cost estimates when predicted

using the KNN method.

Figure 4 MRE distribution for KNN (k=4) versus MRE

for predicting SLOC using the mean

For SLOC, the MRE curves lie almost on top of each other

until the 50th percentile (Figure 4), indicating that the

estimates had similar performances on the half of points that

they predict “well”. For the Upper 50th percentile, the KNN

model predicted better than the mean and had a lower

maximum MRE (not pictured).

Exploratory Analysis of Optional Inputs

Motivation—Traditional KNN prediction models require

values for all input fields in order to output an accurate

estimate of the response variable. This was true of the prior

version of ASCoT KNN. However, since ASCoT’s intended

use is as an analogy-finder and cost-estimator during the pre-

formulation phase of a project, having the option of flexible

inputs is a feature that is potentially beneficial to a user who

may be missing some inputs.

Since the previous version of ASCoT KNN had no method

for dealing with missing inputs, it forced the user to guess the

values of unknown parameters. Random guessing may

impact which neighbors are utilized to build the cost

estimates and thus which missions are returned to the user as

analogous missions. This not only impacts the numerical

output of the KNN models, but also the use of the tool as an

analogy search engine.

In the new version of KNN with optional inputs, excluded

fields are not considered in the calculation of neighbors and

thus do not rule out any missions unnecessarily from the

analogy search. However, while optional inputs returns more

accurate analogies, the models built on reduced dimensions

will likely perform worse than the full model with all

attributes.

Evaluation of Number of Inputs—We ran a preliminary

analysis on the KNN models to judge how much accuracy

would be lost by using fewer inputs than the full set of seven

possible parameters. Primarily using MRE, we compared

using n=1, n=2, …, n=7 inputs to predict the effort level (for

SLOC there are only six possible inputs so n=1 to n=6 were

analyzed). For models with n < 7, LOOCV MREs were

calculated for each mission as follows:

1. Set n

2. Select subset of n variables

3. Remove one mission from the data

4. Build KNN model on training missions using only subset

of n variables and predict effort or SLOC for test mission

5. Compute MRE for that test mission

6. Repeat steps 3-5 for all missions

7. Return to step 2 with new subset of n variables until all

subsets have MRE values

8. Average across all possible subsets, then return to step 1

with a new n

Thus, MRE values for each mission were calculated by

computing all MREs for all subsets of n inputs, then

averaging across all seven-choose-n models.

0

0.2

0.4

0.6

0.8

1

1.2

0th 25th 50th 75th

M
R

E

Percentile

KNN Effort Performance vs. Mean
KNN Mean

0

0.2

0.4

0.6

0.8

1

1.2

0th 25th 50th 75th

M
R

E

Percentile

KNN SLOC Performance vs. Mean
KNN Mean

 9

Computing the MRE values for each number of inputs

resulted in an MRE distribution for n=1 to n=7 (n=6 for

SLOC KNN Estimator). The same MRE and SE metrics as in

the previous section were used to assess model performance.

Figure 5 Upper 50th percentile of MRE distributions for

n=1 to n=7 and mean

In Figure 5, observe that the MRE distributions are top of

each other for the first half of the distribution, but perform in

order of number of inputs for the second half. This effect is

more easily seen in Table 18 below.

Table 18 KNN Effort errors by number of inputs

n MRE MSE

25th 50th Mean 75th Max Median Mean

1 0.16 0.30 0.59 0.59 5.05 45118 122698

2 0.20 0.31 0.60 0.60 4.76 61045 113427

3 0.21 0.36 0.61 0.61 4.06 64611 114799

4 0.20 0.38 0.59 0.59 3.93 56048 106790

5 0.20 0.32 0.54 0.54 3.72 44652 94804

6 0.14 0.32 0.48 0.48 3.67 27444 90549

7 0.13 0.31 0.47 0.47 3.67 37351 88276

Mean 0.17 0.37 0.69 0.69 6.03 40161 154793

As expected, the full model with all 7 variables predicted

effort the best, with the lowest MRE and SE statistics across

the board in Table 18. The 6 variable models were not far

behind, still performing slightly better than the mean,

especially in the 50th to 100th percentile and in mean MRE

and MSE. Using only three to five variable inputs was more

indistinguishable from predicting using the mean, except in

the max MRE and MSE categories, indicating that the mean’s

prediction error distributions are highly skewed and the KNN

error distributions are probably less so. Lastly, using only one

or two inputs did not have much predictive power, but may

still have value towards choosing analogous missions.

For the SLOC estimator detailed in Table 19, the full model

with all six variables (no Inheritance) was the only model

which performed better than the mean. Using five variables

has about the same predictive power as using the mean,

displaying comparable values for MRE, a higher MdSE

statistic and a lower MSE statistic. However, it is important

to note that since MRE values were averaged across all

possible subsets, these tables do not capture information

regarding how accurately individual subsets were able to

predict the effort levels of each mission. The below average

prediction error rates for n < 6 may be due to one or two

subsets of n variables that performed especially poorly.

Table 19 KNN SLOC errors by number of inputs

n

MRE MSE

25th 50th Mean 75th Max Median Mean

1 0.22 0.30 0.66 0.66 5.18 1633 5711

2 0.17 0.32 0.66 0.66 4.47 1755 5108

3 0.21 0.35 0.68 0.68 4.47 2000 4483

4 0.27 0.36 0.67 0.67 4.30 1722 4262

5 0.23 0.36 0.62 0.62 4.20 1605 3603

6 0.21 0.34 0.61 0.61 4.12 1159 3741

Mean 0.21 0.35 0.70 0.70 4.53 1375 6143

Evaluation of Attributes—Upon closer examination, different

KNN models performed better than others depending on

which variables were included. In order to compare

performance between subsets, two MRE and squared error

measures were computed separately for each subset using the

same process as in the previous section (without averaging in

Step 8). Then, each subset was given a point for each of the

four error statistics that was lower than the mean statistic.

Points were totaled across subsets and averaged across

attributes to see which combinations of attributes performed

the best.

In our analysis, we considered the performance of each

attribute and the performance of each attribute pair. For

effort, there were 7 different attributes, amounting to 64

subsets with each attribute individually and 32 subsets for

each attribute pair. In our evaluation, assuming that the error

statistics are equally weighted and independent, we would

expect a score of 2 to indicate that a subset performed the

same as the mean, a higher score to indicate superior

performance and a lower score to inferior performance.

However, it can be seen in Table 20 that all attributes score

higher than 2. We attribute this to the correlation between

error statistics.

0

2

4

6

8

50th 75th 100th

M
R

E

Percentile

MRE distributions by number of inputs

1 2 3 4 5 6 7 Mean

 10

Table 20 KNN Effort subset performance by attribute

and attribute pair

 Size
No.

Deploy Redun Type
No.
Instr Dest Inher

Mission Size 2.66 2.97 2.84 3.00 2.38 2.75 2.91

Deployables - 2.83 3.16 3.03 2.78 2.84 3.34

Redundancy - - 2.78 3.03 2.41 2.72 3.03

Mission Type - - - 2.92 2.72 2.75 2.88

Instruments - - - - 2.16 2.13 2.44

Destination - - - - - 2.45 2.66

Inheritance - - - - - - 2.72

For effort, the attribute which performed best on its own was

Mission Type. Number of Instruments performed the worst

on its own, marking error rates better than the mean on only

2.16 out of 4 error statistics on average. As a pair, the top two

performers both included Number of Deployables, paired

with Inheritance and Redundancy, respectively. Overall, the

results suggest that including Mission Type or Number of

Deployables is favorable to producing accurate estimates,

while Number of Instruments is probably an ok measure to

exclude, if necessary.

Table 21 KNN SLOC subset performance by attribute

and attribute pair

 Size
No.

Deploy Redun. Type
No.

Instr. Dest.

Mission Size 1.53 1.31 1.50 1.88 1.56 2.50

Deployables - 1.25 1.25 1.63 1.25 2.13

Redundancy - - 1.44 1.75 1.19 2.00

Mission Type - - - 2.00 1.63 2.44

Instruments - - - - 1.25 1.75

Destination - - - - - 2.09

For the SLOC attributes, the results in Table 21 show that

most attributes scored lower than 2, with the exception of

Mission Type and Destination. Additionally, it is notable that

while Number of Deployables was a good predictor of effort,

it does not predict SLOC as well.

A similar analysis could be conducted for each of the

combinations of 3 attributes, and so on. However, these

results must be taken with a grain of salt because some of the

error in the estimate will always be due to irreducible random

error. Note that the irreducible error may be also be affecting

which subsets perform above and below the estimates

produced by the mean. Since the chosen performance metric

involves a discrete binary component, random error has a

large effect on our analysis.

Our intent in analyzing the performance of different subsets

of inputs is not to say that users should only enter the inputs

that performed well in the analysis. In reality, the user will

3 In some cases of estimation through cluster analysis, the variance of the

dependent variable is used as a minimization parameter, where clusters are

not have much choice as to which variables are known or

unknown. The purpose of our analysis is to inform users think

critically about which inputs that they are entering in order to

receive the best estimate possible and to give them an idea

about which mission variables may be more important in

deciding cost.

C. Cluster Analysis

Introduction—Cluster analysis, also called clustering, is an

analytical approach for grouping a set of observations in such

a way that members of the same group are more similar to

each other than to observations in other groups [14]. This

makes it a natural approach for developing analogy

estimation models. There are a number of different statistical

algorithms that can be used to perform clustering, four of

which were used for cluster analysis in ASCoT as described

below.

In cluster analysis, groupings are determined based on

inherent differences within the data that cause a natural

separation. Due to this separation between groupings in the

data, the expectation is that the parameter of interest (the

dependent variable) is different for each group and has

smaller variance within each group than across the sample a

whole. Unlike parameter estimation in regression, the

dependent variable is not considered when defining the

groups or clusters (performing cluster analysis) – this ensures

unbiased groupings.3

An effective use of cluster analysis requires a blend of system

knowledge and quantitative metrics. Much like linear

regression, there are quantitative metrics that help decide

whether an input variable or model is valid, or better than

another model. However, also like linear regression, it is

possible to ‘over-fit’ a model to a set of data. In the same way

that linear regression can utilize a different number of input

variables or different levels within a categorical variable,

cluster analysis can utilize a different number of input

variables and a different number of clusters. By examining

multiple clustering methods, along with increasing levels of

detail within those methods, we arrive at a precise yet robust

set of clusters.

Because ASCoT cluster-based estimation works by assigning

the user’s mission to a group (cluster) of previous missions

based on user inputs, and using the attributes of that cluster

(KNN within the assigned cluster, average software effort

months or SLOC within that cluster) to yield an estimation –

having the right clusters is essential. Using the right clusters

ensures robust estimates – even if some aspects of the input

mission are not fully defined, if the input mission is assigned

to the correct cluster, ASCoT will provide an accurate

starting point for an estimate.

chosen to minimize this spread per cluster.

 11

In the following sections, each of the four cluster methods

used are discussed along with analysis of the level of detail

and the convergence of results within and across each cluster

method. Additionally, the “Granularity Space”, a framework

for understanding the changing levels of detail across cluster

methods is presented; and the balance between detailed,

precise estimates versus robustness is discussed.

Cluster Analysis Overview

Cluster analysis is designed to identify different groups

within a population, where differences between groups are

maximized and differences within groups are minimized.

Typically, cluster analysis methods rely on a Euclidean

distance metric applied to normalized data to determine the

distance between points and distances between points. This

distance metric lives in the n-dimensional space of the data

set, where n is the number of variables involved. In some

cases, alternative distance metrics are used (e.g. Manhattan

distance), or data sets are projected onto a principal

component or kernel based space before clustering methods

are applied.

For some clustering methods, one necessary input into the

algorithm is the number of clusters that should be used.

Typically, system knowledge informs an estimate of the

number of distinct clusters expected in the data, and then

quantitative metrics refine or fine-tune this number.

Generally, these quantitative methods compare the distance

of each observation to a hypothesized cluster center, assign

each observation to the closest cluster center, re-calculate the

cluster centers, and repeat the process until all points are

assigned to a cluster and the cluster centers converge. This

type of method may include additional nuance, including the

use of principal components, random sampling, and multiple

iterations of initial cluster centers to yield stable results.

Some cluster analysis methods do not require an expected

number of clusters as an input– primarily hierarchical

clustering and density based clustering. Hierarchical

clustering breaks the entire data set down into a sorted tree,

connecting each observation to its closest neighbor. In this

methodology, major splits in the tree indicate different

clusters. Density based clustering relies on a distance

parameter P, where all points not within the specified

distance P of each other create their own, new groups. In each

of these cases, random starting points or iterations are not

needed.

While there are many types of clustering that work well for

different types and “shapes” of data, all of the methods rely

on quantitative metrics to evaluate their performance and are

subject to the level-of-detail versus robustness trade off, just

like linear regression. The pros, cons, and applicability of

each of the methods used are presented and discussed below.

Cluster Methods Used

In order to get full perspective of how historical missions

group together, multiple clustering methods were compared

across different levels of granularity, and the results were

merged to form the final model used in ASCoT.

K-means Clustering (Centroid based iterative clustering)—

k-means clustering is one of the most widely used clustering

methods; it is performed on normalized data, requires a user

input number of clusters n, and requires iterations in order to

arrive at a solution. K-means clustering works by choosing n

random starting cluster centers, calculating the distance

between each data point and each cluster center, then

assigning each data point to the cluster center to which it is

closest. Next, each cluster center is updated by averaging the

components of every data point in that cluster, and the points

are re-assigned to the (new) cluster to which it is closest. This

process is repeated until the cluster centers stop changing and

the members of each cluster are stationary. The number n of

assumed cluster centers is a user input number. [14]

Once the cluster centers are stable for a given iteration of k-

means clustering, the “sum-of-within-cluster-variance”, a

metric for the ‘spread’ or tightness of the clusters, is

calculated. K-means clustering is then iterated many times,

each time with different random initial cluster centers and the

trial with the best sum-of-within-cluster-variance is selected

as the final model.

The sum-of-within-cluster-variance is the sum of the

distances from each data point to the center of the cluster to

which it is assigned. This sum is recorded for each cluster,

and summed over all of the clusters. Unlike an F-statistic for

linear regression, there is no threshold which indicates an

adequate sum-of-within-cluster-variance. However, the

metric is still suitable for comparing models with different

numbers of clusters and determining the best set of a clusters

for a given n. Due to the existence of local minima and sum-

of-within-cluster-variance, it is necessary to iterate different

initial cluster centers until the clusters yielding the best

(lowest) sum-of-within-cluster-variance are found.

Choosing between numbers of clusters requires a balance of

system knowledge, combined with analysis of the sum-of-

within-cluster-variance. In theory, if every single point is

assigned to its own cluster, the sum-of-within-cluster-

variance would be zero; likewise, if the number of clusters is

one, then the sum-of-within-cluster-variance would be the

sum of differences from each point to the overall average of

the data, per dimension. Neither of these results is desirable.

The goal is to find a point where an increase in granularity,

the detail which provides increased information (tighter

groupings), is maximized but not over-defining the system by

over-fitting the data. Usually, this is indicated by the point at

which the step from n-1 to n clusters yields a significant

decrease in sum-of-within-cluster-variance, but a further step

to n+1 yields a very small decrease (Figure 6). This indicates

a natural split of the data.

 12

PCA Clustering—PCA Clustering works by first reducing

the dimensionality of the data to the k principle components

(k is based on choosing the principle components that account

for the greatest spread in variance across the data), then

performing k-means clustering on the data projected onto the

k principle components [14].

Figure 6 When choosing the number of clusters k, major

kinks in the graph indicate significant decreases in sum-

of-within-cluster-variance; here, it is highly likely that

the optimal number of clusters is 6, but 3 should also be

considered

By projecting the data onto k principle components, data that

may be non-convex becomes more convex, which facilitates

clustering. Additionally, by finding important sources of

variance in the data, PCA Clustering automatically highlights

the key dimensions of the data, serving to bring-forward the

most differentiating factors.

Choosing the k used in PCA clustering adds yet another layer

to model selection which affects the detail and precision vs.

robustness tradeoff. The larger the value of k, the more

dimensions of the data set are used in clustering, so this can

increase precision – but using fewer principle components,

key dimensions of the data, means that only the dimensions

with the largest effects are used, which reduces noise and the

potential for over-fitting.

Level of detail: number of principle components, number of

clusters, iteration, result consistency, leave-one-out,

variables and factor levels

Spectral Clustering—Spectral clustering is another method

used in the present analysis which often builds off of centroid

based clustering. In spectral clustering, a distance or

4 Note that density clustering adds another level of detail to be tuned in the

granularity space. However, density based clustering is typically better for
image and or character recognition – it is not ideal for globular data where

the globules have different or unknown spreads or distances between points.

similarity matrix is created, after which the graph Laplacian

matrix of the similarity matrix is determined; with these

steps, either centroid or density clustering may be

performed4. Once we have the graph Laplacian, the major

eigenvectors are taken, and the expected number of clusters

is based on the number of major eigenvectors. Spectral

clustering can work with non-convex data, but its specialty is

more in the image and graph-edge-node based world.

Level of detail: m eigenvectors, type of difference matrix

chosen (also present in other cluster methods, but more

options are sometimes used here), leave-one-out, variables

and levels

Hierarchical Clustering—Hierarchal clustering is

performed in this analysis as another lens through which to

look at our data, to find the optimal mission groupings, and

to merge the results of other more nuanced cluster methods.

Hierarchical clustering has three main methods: (1)

minimization of difference between closest points within a

group, (2) minimization of distance between farthest apart

members of each group, and 3) a mixture of (1) and (2),

minimum distance to the center of a group. The intuitive

methodology of hierarchical clustering is to repeatedly iterate

over the entire data set, find the two points which are closest

together, group those two points together or merge a point

into the group of the point it’s closest to, until all of the data

has been grouped into a single tree-like structure [14]. In

method (1), the linkages are determined as such: when a data

point is closest to a data point that is already in a group, that

new data point then joins that group, as in another branch of

that group. In method (2) when comparing the distance of

data points to points already in a group, a data point is

compared the member which is farthest away in each group,

and then it is connected to the group to which is has the

smallest maximum distance. The third method compares a

data point to the center of each current group of points, and

assigns it to the group to which it is closest to the average.

Variables, Factors and Levels—When quantizing the levels

of a categorical variable, the numeric values must be chosen

carefully. If the different levels are not ordered (a

categorical or nominal variable), then the information can be

encoded in binary variables. However, if the information is

ordinal, it must be encoded in numerical order. [2]

While using numeric variables exactly as they appear in the

dataset, i.e. number of instruments, was a standard decision,

decisions also needed to be made for the other, more

qualitative, variables. For example, what is the best way to

encode mission destination numerically? How can we best

quantify orbiter missions versus rover missions?

As this is the case for the present data, density clustering is not used in this

analysis.

 13

Specifically, setting mission size as 1, 2, 3 and 4 makes sense

– this is a typical encoding of size related categorical

variables. Mission type is a bit less straight forward – how

‘similar’ are orbiters to landers? And orbiters to rovers? And

landers to rovers? It is clear that landers and rovers are

different than orbiters, and it makes sense that landers are

closer to rovers than orbiters are to rovers – rovers include a

lander and beyond that, have additional flight hardware.

Table 22 Choosing the best number of levels for

categorical variables, as well as the right encoding

values, is necessary to include the right information,

while not over-segmenting the data

Since these assigned encoded variables will be used to

differentiate and analogize between missions, we need the

data to be representative of the qualitative variables that they

represent. Therefore, the goal is to encode the qualitative

information in an accurate, consistent, logical, and

adequately representational manner.

Multiple cluster analysis iterations were performed,

including or excluding different levels of categorical variable

breakdown, and the results were generally consistent with the

final results presented. The final variables (Table 22) chosen

for use in cluster analysis, and the levels of categorical

variables, were chosen for robustness, consistency in results,

and alignment with system and engineering knowledge.

Level of detail: number of variables, levels of categorical

variables including number of levels and quantity of

encoding

Granularity Space: Choosing the right level of detail

So, there are many lenses through which to examine how

missions group together, and each of these lenses has its own

set of knobs – Now, how do we find the right combination of

cluster analysis input parameters? How do we obtain the

optimal amount of precision and detail while maintaining a

robust set of clusters that does not over-fit the data?

Optimal results:

• Detailed groupings of missions that are similar to

each other but different from other groupings

• Consistent across iterations

• Consistent between cluster methods

• Consistent to data variation (through LOOCV)

• Align with systems and engineering knowledge (if

a Mars rover is grouped with a small Earth orbiter,

something is off!)

In order to accomplish this, we need to

1. Do a parameter sweep from less detailed to more

detailed, across the tunable input parameters

2. Iterate clustering to ensure we attain globally

optimal clusters rather than getting stuck at local

minima

3. Compare results across cluster methods to look for

consistency and alignment at similar levels of

detail

4. Map the results of which missions cluster together

and where on the granularity space they align with

each other, as well as systems and engineering

knowledge

A facet of analysis that is tougher to quantize, relative to

number of groups, number of principle components or

number of eigenvectors, is the rate of convergence in cluster

groupings. We can measure this rate by the number of

samples required in order to ‘find’ a globally optimal result.

In theory, while a large number of samples does not diminish

the fact that the global minima was eventually found, it does

provide commentary and context on the robustness of the

clusters, and complexity and variance within the shape of the

data.

Examining the convergence of cluster analysis methods at

different levels of granularity ensures that we examine the

optimal results of clustering per method, at each level within

the granularity space in order to find the most robust yet

precise cluster results (Figure 7).

Variable Levels Encoding

Number of
Instruments

Numeric, used as-is (6 instruments
stays as 6, etc)

Number of
Deployables

Numeric, used as-is (2 deployables
stays as 2, etc)

Mission size Small, Medium, Large,
Flagship

1, 2, 3, 4

Mission Type Orbiter, Observatory,
Lander, Rover

1, 1, 2, 4

Destination Earth, Inner Planetary,
Asteroid/Comet, Outer
Planetary

1, 2, 3, 4

Heritage Very Low to None,
Low, Medium, High,
Very High

1, 2, 3, 4, 5

Redundancy Single String, Dual
String Cold, Dual String
Warm

1, 2, 4

 14

Figure 7 Looking at the results (Group Membership,

Size of Clusters, Overlap between Clusters, and other

parameters) across the Granularity Space, we can see

where cluster methods and results align most, and at

which level of detail; we’re looking for consistency

The way we will view this is by examining which groups of

missions ‘break-off’ from the rest of the missions, in what

order. The order in which missions break off from the group

of total missions to some extent indicates the degree to which

they are ‘different’. The order in which the mission types

break off is discussed in more detail subsequently.

In order to tally the convergence of cluster groupings, and to

determine how quickly distinct cluster groupings arose,

additional analysis steps were implemented. Specifically,

many iterations of clustering (across the whole granularity

space) were performed, and a count of how often each

mission was clustered with each other mission and with

specific groups of missions was tracked. This was

accomplished according to the following steps –

1. Choose a set of parameters (n clusters, on k principle

components)

2. Perform clustering on the data

3. Record which missions appear in the same clusters using

an assignment-comparison matrix (mission-pairing-

comparison matrix)

4. Repeat for hundreds or thousands of iterations

5. Add the mission-pairing-comparison matrix to the prior

mission-paring-matrix each time, yielding a tally of how

often each mission was paired with each other mission

5
 An interesting question emerged during our analysis: how does the most

common local minima compare to the global minima? This would an
interesting topic for a separate research endeavor. In this case, it was used to

provide context and make inference about the shape of the data the more

6. Perform hierarchical clustering on the assignment-

comparison matrix in order to analyze and determine the

groups of missions that were paired together most often

Furthermore, various iteration levels were employed within

each cluster method— thousands of trials of k-means, PCA

clustering and spectral clustering were performed with one

iteration per trial, 25 iterations per trial, and 50 iterations per

trial. This allows us to compare the consistency of local

minima, how often the most common local minima occur

compared to the global minimum5 with different number of

trial starts, and how long it may take the sum of local minima

to converge to the global minima (if it does).

Cluster Analysis Results

To summarize, multiple cluster analysis methods were used,

swept across the granularity space from less detailed to more

detailed, the overall results from all of the methods were

compared, and the most consistent clustering results were

taken as the ultimate results. Inputs to the Ascot model assign

a user’s mission to a cluster from which a software cost or

labor estimate is made based on KNN within the assigned

cluster, and the average of that cluster is also shown. As our

primary goal is correct and robust estimates that align with

engineering knowledge, it is important that we create

coherent, robust clusters, so that input missions get classified

with the right analogous missions to create trustworthy

estimates.

k-means clustering results—Because k-means clustering is

less nuanced and more simple than PCA clustering, it is a

good place to start to explore the data and the clusters that

may be present. K-means clustering performed surprisingly

well at a high level, breaking missions into relatively

consistent groupings across iterations, and aligning decently

with systems knowledge. It generally did well separating

Rovers and Landers from other missions.

At the detailed, high granularity level, it also performed

decently. Allowing up to 8 clusters, k-means created clusters

that generally separated Earth missions, and rovers/landers,

but had some strange mixes of large planetary orbiters and

planetary and asteroid/comet missions. While some of this

mixing makes sense, pushing towards 8 clusters with a data

set that isn’t large causes overfitting to become a cause for

concern.

In the ranges between 3 and 8 clusters, k-means was a bit less

consistent; it is this area, where we want to see which is a

bigger differentiator – small versus large orbiter, planetary

versus Earth mission, low versus high heritage, or

Asteroid/Comet versus planetary – that we need more

information.

consistent the local minima groupings, and the closer they are to the global

minima, the more globular the data and the more robust the cluster
groupings, if they align.

 15

PCA clustering results—Like with k-means clustering, PCA

clustering was robust at the highest levels of separation.

However, by tuning our level of detail, and finding the right

place in the granularity space, PCA clustering was able to

better sort some of the missions at the middle to high levels

of detail. Specifically, PCA clustering with 6 principle

components was able to provide our final definition of the set

of Earth and small-to-mid size planetary orbiters.

Figure 9 shows the reduction in variance versus the number

of principle components. At first glance, three looks like an

appropriate number of principle components to use given the

reduction in variance and the subsequent leveling-off. Six

principle components looks like another viable option but

since there are only seven original components, this removes

principle components’ attractive feature of dimensionality

reduction.

As it turns out, using three principle components is stable and

does well if we maintain a lower number of clusters (Large

Outer Planetary, Rovers, Landers, and Earth & Planetary

Non-Landers), but if we increase our level of detail enough

to zoom in and separate out that Earth & Planetary Non-

Landers group, increasing the number of principle

components is beneficial. In some cases, at a lower detail

level of the granularity space, with fewer principle

components and clusters, the Rover missions group with the

Large Outer Planetary missions. This is interesting, and

makes sense given some of the characteristics of these

missions: they are all large to flagship missions, have low

heritage, many instruments, and mid to high levels of

deployables. When increasing the level of granularity, they

consistently separate – which also makes sense, and allows

for better estimation for input missions.

Ultimately, seven Clusters based on six principle components

were found: Smaller Earth Missions; Larger Earth with

Planetary Missions; Smaller, Lower Heritage Planetary &

Ast/Com Missions; Larger, Higher Heritage Planetary &

Ast/Com Missions, Large Outer Planetary Missions; Rover

Missions; and Lander Missions.

Spectral clustering results—Spectral clustering often does

very well with image recognition and character recognition –

and is a bit closer to a density based cluster analysis approach

while still functioning on globular, non-image data. It may

not be ideal, in this case, but it does provide a breakdown at

a high level, and it is still helpful as part a lens when

analyzing the problem.

Spectral clustering, like the other methods at the top level of

granularity, did a good job of separating rover missions and

flagship outer planetary missions. It is good to see this

general consistency across different lenses for examining the

separation of missions into groupings. However, within the

small-to-mid-size mission groupings, spectral clustering did

not do so well – it did not consistently group missions in this

category into similar groups across iterations, and it didn’t

align well with systems and engineering knowledge.

Figure 8 n=7 Clusters on k=3 Principle Components – the many non-red squares in the assignment-comparison

matrix on the left, we can see that over many iterations, missions are not consistently grouped together; in the center

plot, we can see less differentiation between groups in the hierarchical cluster analysis of the assignment-comparison

matrix, based on the small height of some of the branches; the plot on the right shows mission groupings and group

overlap, plotted with the first two principle components

Figure 9 Remaining variance as a function of the

number of principal components

 16

Hierarchical clustering results—With Hierarchical

clustering, we saw high-level breakouts between rover,

planetary and earth based missions. This is not surprising

given that the few Large Outer Planetary missions in the

database are so different, and that there are very few Outer

Planetary and Rovers missions. The different hierarchical

clustering methods showed similar results. It’s interesting to

note – in some cases, the Rover missions were grouped with

the Large Outer Planetary missions (as with some other

methods) – this makes sense when we examine the

characteristics of these missions, and see that they are all

large to flagship size, and all have low heritage, many

instruments, and mid to high levels of deployables. So, it’s

nice to see the quantitative clustering methods making sense,

but we’d like to increase the granularity of analysis to align

further with systems level knowledge – where Rovers form

their own group.

Within the Earth and Planetary non-Lander missions

(orbiters, observatories, flybys, anything that does not land

softly on a planet), there was a good deal of confusion. This

is not surprising, as this is a tough part of the data to

differentiate, and hierarchical clustering is not the most

nuanced option. Including or excluding some variables, or

removing potential ‘outlier’ missions, yielded very similar

high level results.

Figure 10 n=7 Clusters on k=6 Principle Components – the significant amount of dark red in the assignment-

comparison matrix on the left shows that over many iterations, missions are almost always grouped together; in the

center plot, we can see a great deal of differentiation between groups in the hierarchical cluster analysis of the

assignment-comparison matrix, based on the large heights of the branches; the plot on the right shows mission

groupings and group overlap, plotted with the first two principle components

Figure 11 By examining which groups of missions split off in which order, we can get a sense for how ‘different’ those

missions are from each other; note that the order in which mission groups split off is slightly different when

comparing different clustering methods – but seeing similar final groups at the high-detail level of the Granularity

Space increases our faith in the resulting clusters

 17

Consistency Within Clusters/ Difference Between Clusters

When examining the convergence of results across the

various methods considered, we see good alignment at the

high level – either rover or flagship outer planetary missions

typically break away from the data first into their own groups

(Figure 10 and Figure 11), then Earth and Planetary missions

separate. In some lower granularity tests, (fewer versus more

clusters, principle components, variables and levels of

categorical variables), flagship orbiters may group with rover

missions. This makes sense, as the scale of rover missions

and flagship outer planetary orbiters is often similar, and to

this end, a complex examination of the characteristics per

cluster shows that they do have overlap in size, low heritage,

and high numbers of instruments and deployables.

We saw this result in multiple cluster methods at the lower

end of the granularity space, but when using a more fine-

toothed comb, we saw rover and flagship missions separate

into different groups. This makes sense at a systems and

engineering level, and while increasing the functionality of

the resulting clusters in the context of a cluster based

estimation tool, it decreases the variance in software cost and

effort within those clusters.

One inconsistency that was observed across cluster methods

was the time at which lander missions break off into their own

cluster. While with a fine-tooth comb, we’d certainly expect

landers to break away from orbiters, it makes sense that the

breakoff could happen late in the process because a small

lander mission may have complexity or cost that is similar to

a complex planetary orbiter mission, especially when varying

levels of heritage come into play. Even if different cluster

methods separate them into their own group earlier or later as

we sweep across the granularity space, the fact that we see

them consistently form their own group, combined with

system level knowledge, makes the results of our clustering

analysis more credible.

The missions that were most hesitant to separate were the

Earth and small to mid-size planetary and asteroid/comet

non-Lander missions (including orbiters, observatories, and

flybys/carriers – anything that doesn’t land softly on a

celestial body). This is not surprising since system and

engineering knowledge shows that there is overlap between

complex Earth orbiters, and especially observatories, and

lower complexity planetary, and especially inner planetary,

orbiter missions.

There was less consistency within the order in which

different clustering methods separated out the Earth,

Planetary, and Asteroid/Comet missions. Some cluster

methods broke out Landers first, whereas others created

multiple Planetary mission groups before separating the

Earth missions, for example. This is not surprising, given

system and engineering level knowledge. That different

methods separated these missions into groups in different

orders simply shows us that there is more variance in this part

of our data space. Still, finding relatively consistent

groupings at the higher end of the granularity space as well

the more detailed level of our granularity space (more

variance in the middle), makes us feel better about our results.

Overall, as we sweep across the parameter space, we see a

convergence of results at the early stages: rovers and flagship

outer planetary missions generally breaking into their own

groups. We also see solid convergence at the higher end of

the granularity space: a lander mission group, an Earth

mission group, a smaller planetary and Earth mission group,

and a final larger planetary and asteroid/comet group. Given

the alignment of different cluster methods, the high level of

iteration, sampling and convergence throughout the analysis

process, and the alignment with system and engineering

knowledge, we have more faith in the validity of the resulting

clusters. Specific characteristics of each group are presented

in the subsequent section.

It should be noted: in addition to finding clusters that are

optimally separated mathematically, and are robust and

repeatably separable, keeping the final use in mind (as an

estimation tool) is part of finding the right clustering

methodology.

For example, if a user inputs a large orbiter mission and sees

their mission in a rover mission group, with a rover mission

level software cost (whether or not this is true), a user may

not trust the results, even though some flagship orbiter

missions have a similar software cost to various rover

missions. So, in the case of mathematically indistinguishable

groupings, considering user experience and tool functionality

in combination with system and engineering knowledge

would be the most logical tiebreaker.

Additional testing for the quality of cluster separation of

clusters was performed, with an emphasis on final

applicability to software cost and effort prediction. As

discussed elsewhere, prediction is made using the k-nearest-

neighbor method in order to maximize estimation precision.

The MRE of multiple clustering results was tested and is

shown in Figure 12, where the minimum integral of the total

Figure 12 MRE Plots show that estimates from PCA

Clustering perform well, and distinctly best, for the

more extreme estimates

 18

MRE curve is generally the optimal prediction result. PCA

clustering generally performed best, especially with regards

to less common missions (that create huge errors for some

methods), where it offered a major reduction in total error.

Mission Characteristics by Cluster

By examining the missions per cluster, and the distributions

and relationships of the variables per cluster, we can see the

major separating factors and observe the similarities within

groups. Each cluster’s missions and their respective attributes

are broken out in Figure 13 to Figure 19.

For Earth Missions, Number of Deployables, Mission Size,

and Number of Instruments are the primary differentiators;

for Planetary & Asteroid/Comet Missions: Heritage, Number

of Instruments, and a summation of Mission Size with

Destination differentiate the two primary non-Earth groups;

Large Outer Planetary missions group together very well;

Landers group together very well, and Rovers group together

very well. The key differences between Earth and Planetary

groups appear in the Heritage to Mission Size relationships,

as well as the Number of Deployables; Landers and Rovers

differentiate very clearly, based on the Number of

Instruments and the Deployables, as well as Heritage.

Figure 13 Smaller Earth Missions

Figure 14 Larger Earth & Some Planetary Missions

Figure 15 Large Outer Planetary Missions

Figure 16 Lander Missions

Figure 17 Larger, Higher Heritage Planetary &

Asteroid/Comet Missions

Figure 18 Smaller, Lower Heritage Planetary &

Asteroid/Comet Missions

Figure 19 Rover Missions

Observing these similarities between groups increases our

system and engineering level faith in the results, and may

allow for additional engineering and mission cost and mass

estimation profiles per group, to be examined outside of the

present analysis.

 19

5. CONCLUSIONS AND NEXT STEPS

The primary objectives of ASCoT are to 1) provide improved

methods for estimating software cost and size in the early

project life-cycle, 2) formalize analogy-based estimation

taking advantage of machine learning methods, and 3) set a

standard for the release of NASA wide estimation tools as on-

line, web-based tools.

All of these objectives have been met. The fulfillment of the

first two objectives are extensively documented in this paper.

In meeting the third objective, a new task COMPACT

(CubeSat Or Microsat Probabilistic + Analogies Cost Tool)

has been started which will use the ASCoT framework.

ASCoT R1, NASA’s first online web model was deployed to

entire NASA audience with access to NASA ONCE in

August 2018. The primary next step is the development of

training material and delivering training across the various

NASA centers. The training process will allow the team to

collect feedback and test the process for pushing model

updates remotely for updated observations or recalculated

clusters.

Finally, the delivery of ASCoT R2, which will incorporate

new mission data as it becomes available and updates as

requested by our users, is planned for August 2019.

ACKNOWLEDGEMENT

 2018. All rights reserved. The research was carried out

at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National

Aeronautics and Space Administration.

REFERENCES

[1] Hihn, J.M. and H. Habib-agahi. Cost Estimation of

Software Intensive Projects: A Survey of Current Practices.

Proceedings of the Thirteenth IEEE International

Conference on Software Engineering, May 13-16, 1991.

[2] L. Briand, K. El Emam, D. Surmann, & I. Wieczorek. An

assessment and comparison of common software cost

estimation modeling techniques. 21st International

Conference on Software Engineering, Los Angeles, CA,

1999.

[3] M. Shepperd & C. Schofield. Estimating Software Project

Effort Using Analogies. IEEE Transactions on Software

Engineering, 23(12), 1997.

[4] J. Hihn, T. Menzies, L. Juster, G. Mathew, J. Johnson,

Improving and Expanding NASA Software Cost Estimation

Methods, 2016 IEEE Aerospace Conference, Big Sky, Mt.,

March, 2016.

[5] J. Hihn, M. Saing, E. Huntington, J. Johnson, T. Menzies,

G. Mathew, J. Johnson,The NASA Analogy Software Cost

Model: A Web-Based Cost Analysis Tool, 2017 IEEE

Aerospace Conference, Big Sky, Mt., March, 2017.

[6] Tim Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes.

Validation methods for calibrating software effort models. In

Proceedings, ICSE, 2005. Available from

http://menzies.us/pdf/04coconut.pdf.

[7] Menzies, T. Chen Z, Port, D., Hihn, J., Simple Software

Cost Analysis: safe or Unsafe?, ACM SIGSOFT Software

Engineering Notes (SIGSOFT) 30(4)1-6, s2005.

[8] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum.

Selecting best practices for effort estimation. IEEE

Transactions on Software Engineering, November 2006.

Available from

http://menzies.us/pdf/06coseekmo.pdf.

[9] "Stable Rankings for Different Effort Models" by Tim

Menzies and Omid Jalali and Jairus Hihn and Dan Baker and

Karen Lum. Automated Software Engineering, December

2010 .

[10] T. Menzies, · Y. Yang, · G. Mathew, ·B. Boehm ,· J. Hihn,

Negative results for software effort estimation, Empiracle

Software Engineering, October 2017, Volume 22, Issue 5.

[11] B.Boehm, Software Engineering Economics, Prentice

Hall, 1981.

[12] B. Boehm, et. Al., Software Cost Estimation with

COCOMO II, Prentice Hall, 2000.

[13] E. Kocaguneli, T. Menzies, and J.W. Keung. On the

value of ensemble effort estimation. IEEE Transactions on

Software Engineering, 38(6):1403–1416, Nov 2012.

[14] G. James, D. Witten, T. Hastie, & R. Tibshirani. An

Introduction to Statistical Learning with Applications in R.

New York: Springer, 2017.

BIOGRAPHY
Jairus Hihn (PhD University of

Maryland) is a principal

member of the engineering staff

at the Jet Propulsion

Laboratory and the manager of

the Systems Modeling and

Analysis Group. and is

currently leading a laboratory

wide cost improvement task. He

has been developing estimation models and providing

software and mission level cost estimation support to

JPL’s and NASA since 1988.

 20

Michael Saing (BS, Cal State

University, Long Beach). He

completed his Aerospace

Engineering undergraduate

studies and gained his early

career work experience at the

NASA Ames Research Center. He

is currently a Systems Engineer at

the Jet Propulsion Laboratory

developing aerospace engineering analysis models and

serves as TeamXc’s subsystems chair supporting NASA

and JPL’s spaceflight projects and programs.

Alex Lumnah (B.S., Occidental College,

2016) is a Systems Engineer at the Jet

Propulsion Laboratory developing

aerospace engineering analysis models

and supporting Mars 2020 requirements

development and V&V.

 Elinor Huntington is a graduate

student at Cal Poly Pomona,

studying Computer Science. She

works part time at JPL in the Office

of Formulation. In a past academic

life, she studied Russian Literature.

 Thomas Youmans (MS

Georgetown University) is a

Systems Engineer and Data

Scientist at NASA’s Jet

Propulsion Laboratory. Thomas

received his Master of Science in

Mathematics & Statistics from,

and his Bachelor of Arts in

Physics and Economics from

Lewis & Clark College. Thomas supports early mission

formulation through statistical modeling, operations and

technical design through data analysis. Previously,

Thomas served with the Peace Corps in Bulgaria.

James Johnson is responsible for

providing Cost Estimates and

Assessments, Schedule Estimates and

Assessments, Risk Analyses, and Joint

Cost Schedule Risk Analysis for the

OCFO Strategic Investments Division

(SID) at NASA Headquarters. His

work for NASA HQ includes

supporting high level Agency studies, providing support

and consultation to projects, and developing policy and

guidance for the Agency in the areas of cost, schedule, and

risk assessments.

Tim Menzies (Ph.D., UNSW,

1995) is a full Professor in CS at

North Carolina State University

where he teaches software

engineering and automated

software engineering. His

research relates to synergies

between human and artificial

intelligence, with particular application to data mining for

software engineering.

 Melissa Hooke is an

undergraduate student at

Pomona College, studying

Mathematics with a

concentration in Statistics. She

currently works part time at

JPL.

 21

APPENDIX A: ACRONYMS AND ABBREVIATIONS
A list of acronyms and abbreviations used in this paper, in alphabetical order, for reference.

Acronym Definition

ASCoT Analogy Software Costing Tool Suite

CADRe Cost Analysis Data Requirement

CER Cost Estimating Relationship

CML Concept Maturity Level

COCOMO Constructive Cost Model

JPL Jet Propulsion Laboratory

KNN K-Nearest Neighbors

LOOCV Leave-One-Out Cross Validation

MdMRE Median Magnitude of Relative Error

MdSE Median Squared Error

MMRE Mean Magnitude of Relative Error

MRE Magnitude of Relative Error

MSE Mean Squared Error

NASA National Aeronautics and Space Administration

ONCE One NASA Cost Engineering

PCA Principle Components Analysis

SLOC Source Lines of Code

WBS Work Breakdown Structure

 22

APPENDIX B: SYSTEM PARAMETERS WITH DEFINITIONS AND EXAMPLES
Detailed tables describing model inputs, complete with possible values, definitions, and examples for each of

the seven inputs used in the KNN and clustering models.

Mission Type Values Description Example

Orbiter A Robotic spacecraft that orbits or its target body.

Also includes flyby spacecraft.
Aqua, New Horizons

Observatory

Observatories are space based telescopes that support

space based astronomy across a wide set of

frequencies. They can be earth trailing or at the

various LaGrange points created by the gravity fields

of the earth, sun and moon.

Kepler

Lander
A robotic spacecraft that does its science in-situ or

from the surface of a solar system body. It does not

move from its original location.

Phoenix

Rover

A robotic spacecraft that does its science in-situ or

from the surface of a solar system body and has the

ability to move on the surface. To date all rovers have

wheels but in the future they may crawl, walk or hop.

MSL

Destination Values Description Example

 Earth Missions that are in an Earth orbit. OCO

Inner Planetary

Missions that target planets within the asteroid belt.

Also includes missions that are Heliocentric, Earth

leading or trailing, at the Earth-Sun-Moon LaGrange

points, and lunar mission.

Maven

Asteroid/Comet
Missions that target asteroids or comets. As these may

typically require more complex, or different,

trajectories than inner planetary missions.

Dawn

Outer Planetary Outer Planetary missions are missions that travel

beyond the asteroid belt.
JUNO

Number of

Instruments
Values

Description
Example

Number of

Instruments
Total number of unique instruments on spacecraft.

Data ranges from 1 to 11

instruments. Median is 4

instruments.

Number of

Deployables
Values

Description
Example

Number of

Deployables

Total number of unique deployables controlled by

spacecraft.

Number of deployable

Solar arrays, booms,

robotic arms, etc. Data

ranges from 0 to 10

deployments. Median is 3

deployables.

 23

Flight

Computer

Redundancy

Values

Description

Example

 Single String Spacecraft has no redundancy in the flight computer Most Earth Orbiters

Dual String -

Cold backup

Spacecraft has redundant flight computers. Backup is

normally off, is powered up and boots when prime

string goes down

Most Deep space missions

Dual String -

Warm backup

Backup computer is powered on and monitoring state

of prime computer, but does not need to maintain

continuous operation (e.g., a sequence may be

restarted, attitude control restarts with last known state,

etc.)

MSL

Inheritance Values Description Example

Low to None

Total Inherited code, including modified code is < 10%

of delivered code.
MER, TIMED, LRO

Low

Total Inherited code, including modified code is

between 10% to 20% of delivered code.

Deep Impact, New

Horizons

Medium

Total Inherited code, including modified code is >=

20% and < 50% of delivered code.
Messenger, MRO

High

Total Inherited code, including modified code is >=

50% and < 80% of delivered code.
JUNO, SDO, GPM core

Very High

Total Inherited code, including modified code is a

minimum of 80% of delivered code.

MAVEN, Grail, NOAA-N-

Prime

Total Mission

Size
Values

Description
Example

Small

Total Mission cost including operations in FY15

dollars is > $120M and < $220 million
Wise, small earth orbiters

Medium

Total Mission cost including operations in FY15

dollars is > $220 million and < $600 million
Discovery class missions

Large

Total Mission cost including operations in FY15

dollars is > $600 million and < $1.1 billion

New Frontiers class

missions

Very Large

Total Mission cost including operations in FY15

dollars is > $1.1 billion

Large assigned mission,

MSL

Software

Delivered

Code

Values Description Example

 Small Delivered logical lines of code is < 50 KSLOC Small earth orbiters

Medium

Delivered logical lines of code is > 50 KSLOC and <

120 KSLOC
LRO, Kepler

Large

Delivered logical lines of code is > 120 KSLOC and <

220 KSLOC
LCROSS, SMAP, Phoenix

Very Large

Delivered logical lines of code is > 220 KSLOC and <

300
OSIRIS-Rex, MER

 Extra Large Delivered logical lines of code is > 300 KSLOC MSL

 24

APPENDIX C: MISSION DATA INCLUSION LIST
List of all missions included in ASCoT alphabetically and by which tool(s) they are included in.

Mission Name Effort KNN SLOC KNN Clustering CER

Aqua 

Cassini  

Contour    

Dawn    

Deep Impact    

Deep Space 1 (DS1)    

Earth Observing 1 (EO1)  

Fast Auroral Snapshot Explorer (FAST)  

Galileo (GLL)   

Gamma Ray Observatory (GRO)   

Genesis    

GEOTAIL 

GLAST 

GLORY    

GOES-R   

GPM Core    

Grail    

Gravity and Extreme Magnetism Small Explorer (GEMS)    

Hubble Space Telescope (HST)  

IBEX   

Insight    

IRIS 

JUNO    

Kepler   

LADEE    

Landsat Data Continuity Mission (LDCM) 

LCROSS 

Lunar Reconnaissance Orbiter (LRO)    

Magnetosqpheric Multiscale Mission (MMS)    

MAP    

Mars Exploration Rover (MER)    

Mars Odyssey    

Mars Pathfinder (MPF)    

Mars Reconnaissance Orbiter (MRO)    

Mars Science Laboratory (MSL)    

Maven    

Messenger    

Near   

New Horizons    

NOAA-N-Prime 

NuStar    

Orbiting Carbon Observatory (OCO)    

Orbiting Carbon Observatory 2 (OCO 2)    

OSIRIS REX    

 25

Phoenix    

RHESSI 

SAMPEX  

SMAP   

Solar Dynamics Observatory (SDO)    

Solar Probe Plus    

Stardust   

Stereo    

Suomi National Polar-Orbiting Partnership (NPP) 

SWAS 

Timed    

TRACE    

TRMM    

Van Allen Probe    

WIRE    

WISE    

